Technical Service Bulletin:

Reducing Backdraft On Condensing Appliances

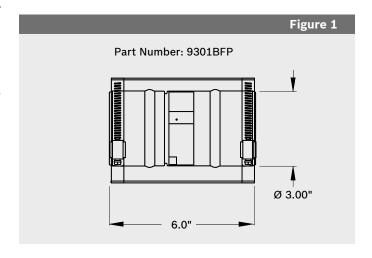
Models: C1050ES, C1210ES, C1210ESC

Introduction

WARNING!

The following bulletin is not a substitute for the water heater's installation manual. Follow all warnings and guidelines outlined in the appliance's installation manual.

In cold climates, components of a tankless water heater can freeze and burst from negative draft. A leading cause of negative draft is combustion appliances in the building not being supplied with sufficient combustion air. A wood stove or furnace can pull its combustion air from the water heater's vent pipe, allowing the cold incoming air to freeze the cold water in the heat exchanger. Supplying more combustion air for all combustion appliances is the solution. A HVAC specialist should be consulted to design solutions for providing more combustion air.

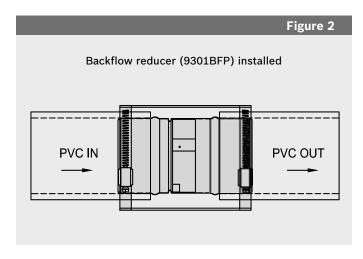

Drawing the water heater's combustion air from the outside is also essential to reducing backdraft. Both the exhaust vent and combustion air terminations should exit out the same wall or roof surface, however, never facing the direction of prevailing winds.

The solution listed in this bulletin is designed to further limit backdraft in extreme conditions assuming all other possible causes have been addressed.

NOTE: The following solution is available only for 3" venting systems.

Backdraft reducer

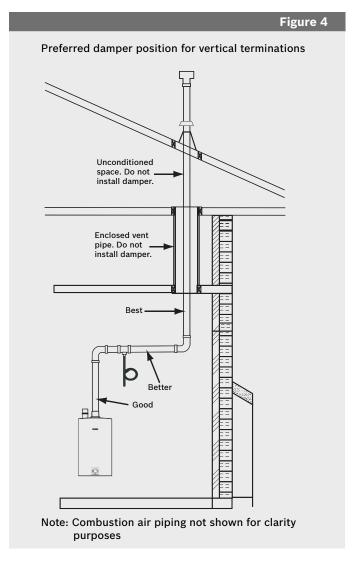
The Heat Fab backdraft reducer (9301BFP) is the preferred option for limiting backdraft (see Fig. 1). This option can be used in either twin pipe or concentric venting systems.



Installation

For this solution to be effective, the internal flapper must be 100% closed when the water heater is not running. Refer to Figures 3 and 4 for preferred installation positions in the vent system.

Installation considerations:


- Install damper per the supplied manufacturer's instructions.
- The damper is only to be used in the exhaust vent piping.
- Ensure directional arrow on damper label faces in the same direction as exhaust flow.
- If installed horizontally, the axis must be horizontal or slightly pitched up towards termination to ensure damper closes 100% when heater is not running.
- To allow accessibility, damper must not be installed in any section of vent pipe that is not accessible for service and inspection.
- Do not install damper in unconditioned spaces (e.g. attics)
 Condensation can build up while the heater is running which can later freeze and potentially block the flapper.

Preferred damper position for horizontal terminations Note: Combustion air piping not shown for clarity purposes

Figure 3 legend:

- a. **Good** Vertical directly on top of the heater.
- b. **Better** Closer to the termination horizontally installed in a conditioned space.
- c. **Best** Closer to the termination vertically installed in a conditioned space.

Figure 4 legend:

- a. **Good** Vertical directly on top of the heater.
- Better Closer to the termination horizontally installed in a conditioned space.
- c. **Best** Closer to the termination vertically installed in a conditioned space.

Bosch Thermotechnology Corp. 50 Wentworth Avenue Londonderry, NH 03053

Tel: 1-866-642-3198 Fax: 1-603-584-1687 www.boschpro.com